Oscillation criteria of certain nonlinear partial difference equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillation Criteria for Certain Third Order Nonlinear Difference Equations

Some new criteria for the oscillation of all solutions of third order nonlinear difference equations of the form ∆ a(n)(∆ 2 x(n)) α + q(n)f (x[g(n)]) = 0 and ∆ a(n)(∆ 2 x(n)) α = q(n)f (x[g(n)]) + p(n)h(x[σ(n)]) with ∞ a −1/α (n) < ∞ are established.

متن کامل

The Oscillation of Certain High Order Partial Difference Equations

In this paper, some criteria for the oscillation of the high order partial difference equations of the form T i(xm,n+axm−k1,n−l1−bxm+k2,n+l2) = c(qxm−σ1,n−τ1+pxm+σ2,n+τ2) are established, where c = ±1, i ∈ N = {1, 2, 3, . . .}.

متن کامل

Oscillation criteria for certain fourth order nonlinear functional differential equations

Some new criteria for the oscillation of the fourth order functional differential equation d dt ( 1 a3(t) ( d dt 1 a2(t) ( d dt 1 a1(t) ( d dt x(t) )α1)α2)α3) + δq(t) f (x[g(t)]) = 0, where δ = ±1 are established. c © 2006 Elsevier Ltd. All rights reserved.

متن کامل

Oscillation Criteria of Third Order Nonlinear Neutral Difference Equations

In this paper we consider the third order nonlinear neutral difference equation of the form ∆(rn(∆(xn ± pnxσ(n)))) + f (n, xτ(n)) = 0, we establish some sufficient conditions which ensure that every solution of this equation are either oscillatory or converges to zero. Examples are provided to illustrate the main results.

متن کامل

Oscillation Criteria for First-order Forced Nonlinear Difference Equations

where (i) {p(n)}, {e(n)} are sequences of real numbers; (ii) {qi(n)}, i= 1,2, are sequences of positive real numbers; (iii) λ, μ are ratios of positive odd integers with 0 < μ < 1 and λ > 1. By a solution of equation (1, i), i= 1,2,3, we mean a nontrivial sequence {x(n)}which is defined for n ≥ n0 ∈ N = {0,1,2, . . .} and satisfies equation (1, i), i = 1,2,3, and n = 1,2, . . . . A solution {x(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1999

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(99)00290-4